Bentuksederhana dari perkalian suku (3xβˆ’2)(x+7) adalah (A) 3x^(2)+23x+14 (B) 3x^(2)+19x+14 (c) 3x^(2)+23xβˆ’14 (D) 3x^(2)+19xβˆ’14
PembahasanGunakan hukum distributif yaitu a + b c + d = ab + a d + b c + b d Sehingga, 2 x βˆ’ 3 x + 6 ​ = = ​ 2 x 2 + 12 x βˆ’ 3 x βˆ’ 18 2 x 2 + 9 x βˆ’ 18 ​ Dengan demikian, bentuk sederhana perkalian suku 2 x βˆ’ 3 x + 6 adalah ​ ​ 2 x 2 + 9 x βˆ’ 18 ​ .Gunakan hukum distributif yaitu Sehingga, Dengan demikian, bentuk sederhana perkalian suku adalah .
C Perkalian Antar Bentuk Aljabar (Algebraic Expressions) Berdasarkan konsep, perkalian bentuk aljabar dilakukan dengan "perluasan kurung" atau "expansion of brackets" yaitu dengan melakukan perkalian satu-satu tiap suku antar bentuk aljabar di dalam kurung. Langkah ini telah dijelaskan pada bagian A3 untuk kasus yang sederhana.
Dalam Matematika, kita akan sering menemukan bentuk aljabar. Apakah itu dan bagaimana cara menyelesaikannya? Yuk, cari tau jawabannya di artikel ini! β€” Siapa yang pernah mendengar istilah aljabar? Aljabar merupakan salah satu cabang ilmu matematika yang menggunakan simbol dan operasi matematika, seperti penjumlahan, pengurangan, perkalian, dan pembagian untuk pemecahan masalah. Al-jabr berasal dari bahasa Arab yang artinya restorasi atau melengkapi. Kamu tahu siapa penemunya? Ia merupakan cendikiawan bernama Al-Khawarizmi. Al-Khawarizmi Penemu Aljabar Sumber Baca juga Al-Khawarizmi, Ilmuwan Terpenting dalam Sejarah Matematika Aljabar biasanya digunakan untuk menyelesaikan suatu permasalahan di berbagai bidang studi, seperti matematika, kimia, biologi, ekonomi, dan lain sebagainya. Jadi, nggak cuma di matematika aja, ya. Makanya, materi ini penting sekali untuk kamu pahami. Sekarang, mari kita simak lebih lanjut tentang aljabar dan cara menyelesaikan bentuk-bentuknya. Bentuk-Bentuk Aljabar Nah, biasanya suatu permasalahan ditulis terlebih dahulu dalam bentuk aljabar agar penyelesaiannya lebih mudah. Bentuk aljabar terdiri dari konstanta, variabel, dan koefisien yang dihubungkan melalui operasi penjumlahan, pengurangan, perkalian, pembagian, perpangkatan, dan pengakaran. Contohnya kayak gambar berikut ini. Kalo kamu perhatikan, bentuk aljabar di atas terdiri dari huruf x sebagai variabel, angka 2 sebagai koefisien nilai x, dan angka 5 sebagai konstanta. Konstanta adalah nilai yang tetap, jadi nilainya sudah jelas. Sementara itu, variabel adalah nilai yang belum tetap, makanya bisa berubah-ubah. Kemudian, variabel bisa disimbolkan menggunakan huruf, misalnya a, b, c, x, y, dan lain sebagainya. Terakhir, koefisien adalah nilai yang berada di depan variabel. Suatu variabel pasti punya yang namanya koefisien, teman-teman. Contoh bentuk aljabar lainnya, antara lain sebagai berikut Baca juga Hubungan Antar Himpunan Matematika Oh iya, selain istilah konstanta, variabel, dan koefisien, dalam aljabar, kamu juga akan menemukan istilah lain, seperti suku maupun faktor. Wah, apa tuh ya? 1. Suku, yaitu sebuah konstanta, atau variabel, atau variabel beserta koefisiennya. Antar suku bisa digabungkan menggunakan operasi penjumlahan atau pengurangan. Contohnya 8, terdiri dari satu suku yang berupa konstanta. 9a + 2b, terdiri dari dua suku, yaitu 9a dan 2b yang dihubungkan menggunakan operasi penjumlahan. 3n2 – 2n – n, terdiri dari tiga suku, yaitu 3n2, 2n, dan n yang dihubungkan menggunakan operasi pengurangan. Suku bisa dibedakan menjadi suku sejenis dan suku tidak sejenis. Dikatakan suku sejenis jika variabel dan pangkat variabelnya itu sama. Tapi, jika keduanya berbeda, disebut dengan suku tidak sejenis. Contohnya 2p2q + 5p2q disebut suku sejenis karena variabel dan pangkat variabelnya sama. 2xy2 + 2x2y disebut suku tidak sejenis karena variabel dan pangkat variabelnya tidak sama. 2. Faktor adalah bilangan yang membagi habis bilangan lain. Contohnya m Γ— n Γ— o atau mβ‹…nβ‹…o, faktornya adalah m, n, dan o. Baca juga Mengenal Operasi Hitung pada Pecahan Operasi Hitung Aljabar Oke, setelah kamu mengetahui bentuk dan istilah dalam aljabar, sekarang kita masuk ke cara menyelesaikan operasi bentuk aljabar, ya. Kita bahas tiga operasi bentuk aljabar terlebih dahulu, yaitu penjumlahan, pengurangan, dan perkalian. Yuk, langsung aja kita simak! 1. Penjumlahan bentuk aljabar Syarat suatu aljabar bisa dijumlahkan adalah suku-sukunya harus sejenis. Hayo, masih ingat kan dengan pengertian suku sejenis? Nah, supaya kamu lebih paham, kita coba kerjakan beberapa contoh soal berikut, ya. Contoh soal Sederhanakan bentuk dari 5a – 2b + 6a + 4b – 3c. Penyelesaiannya mudah, kok. Kita hanya perlu menyusun atau mengelompokkan suku-suku yang sejenis. Suku sejenis berarti variabelnya harus sama. Setelah dikelompokkan, kita bisa jumlahkan aja koefisiennya. 5a – 2b + 6a + 4b – 3c = 5a + 6a – 2b + 4b – 3c = 5 + 6a + -2 + 4b – 3c = 11a + 2b – 3c 2. Pengurangan bentuk aljabar Sama seperti operasi penjumlahan aljabar, kita hanya bisa melakukan operasi pengurangan aljabar jika suku-sukunya sejenis. Contohnya Kurangkan 9a – 3 dari 13a + 7. 13a + 7 – 9a – 3 = 13a + 7 – 9a + 3 = 13a – 9a + 7 + 3 = 13 – 9a + 10 = 4a + 10 Sejauh ini paham, ya? Nah, selain cara-cara di atas, kita juga bisa loh menyelesaikan operasi penjumlahan dan pengurangan aljabar menggunakan lajur atau kolom suku yang sejenis. Contohnya kayak beberapa soal berikut ini! 3. Penjumlahan dan pengurangan bentuk aljabar menurut lajur atau kolom suku sejenis Pada soal berikut, kita tinggal menyusun suku-suku aljabar sesuai dengan variabelnya yang sejenis, ya. Oke, supaya kamu semakin paham dengan materi penjumlahan dan pengurangan aljabar, coba deh, jawab quizz di bawah ini! 4. Perkalian Bentuk Aljabar Kita lanjut ke operasi perkalian pada aljabar, ya. Berbeda dengan operasi penjumlahan dan pengurangan yang hanya bisa diselesaikan jika suku-sukunya sejenis, untuk operasi perkalian ini, dapat diselesaikan, baik sukunya sejenis, maupun tidak sejenis. Oh iya, pada aljabar, simbol perkalian ditulis dengan β€œΓ—β€, β€œβ‹…β€, ataupun hanya dipisah dengan tanda kurung aja β€œ ”. Operasi perkalian bentuk aljabar bisa kita selesaikan menggunakan metode distributif. Hayo, ada yang masih ingat nggak? a. Perkalian aljabar antara suku satu dengan suku dua Jadi, menurut metode distributif, kita tinggal mengalikan a terhadap b, dan a terhadap c. Distributif perkalian terhadap penjumlahan dan pengurangan Penjumlahan a Γ— b + c = ab + ac Pengurangan a Γ— b – c = ab – ac Contohnya b. Perkalian aljabar antar suku dua Kurang lebih konsepnya sama nih dengan poin a, untuk perkalian antar suku dua menggunakan metode distributif, kita kalikan aja a terhadap c, a terhadap d, b terhadap c, dan b terhadap d. a + bc + d = ac + ad + bc + bd Contohnya Selesaikan perkalian bentuk aljabar 2x + y5x – 3y 2x + y5x – 3y = 2x5x + 2x-3y + y5x + y-3y = 10x2 + -6xy + 5xy + -3y2 = 10x2 – 6xy + 5xy – 3y2 = 10x2 – 1xy – 3y2 = 10x2 – xy – 3y2 Gimana nih, teman-teman? Kamu sudah mulai bisa memahami tentang pendefinisian dan operasi hitung aljabar, bukan? Kalau masih ada yang dirasa bingung, tuliskan pertanyaanmu di kolom komentar ya. Nah, jika kamu mau belajar langsung sama yang ahlinya, juga boleh, lho. Gabung sekarang di ruangles untuk BelajarJadiHebat. Referensi As’ari Tohir M., Valentino E., Imron Z., Taufiq I. 2017. Matematika SMP/MTs Kelas VII Semester I. Jakarta Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud. Sumber Foto Foto Al-Khawarizmi’ [Daring]. Tautan Diakses 21 Desember 2020 Artikel ini telah diperbarui pada 21 Desember 2020.
MODELSILABUS MATA PELAJARAN SEKOLAH MENENGAH PERTAMA/MADRASAH TSANAWIYAH (SMP/MTs) MATA PELAJARAN MATEMATIKA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN JAKARTA, 2017 DAFTAR ISI DAFTAR ISI i I. PENDAHULUAN 1 A. Rasional 1 B. Kompetensi yang Diharapkan Setelah Siswa Mempelajari Matematika di Pendidikan Dasar dan Pendidikan Menengah 1 C. Kompetensi yang Diharapkan Setelah Siswa Mempelajari Matematika Apa itu Perkalian Suku 2x 3 x 5? Hello Readers! Pernahkah Anda mendengar tentang perkalian suku? Perkalian suku adalah sebuah konsep matematika yang sering digunakan untuk menghitung hasil perkalian dari suku-suku bilangan. Salah satu contohnya adalah perkalian suku 2x 3 x 5. Namun, tahukah Anda bahwa ada bentuk sederhana dari perkalian suku 2x 3 x 5? Mari kita bahas lebih lanjut! Bagaimana Bentuk Sederhana dari Perkalian Suku 2x 3 x 5? Bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x. Mengapa demikian? Kita dapat mengetahuinya dengan cara melihat faktor dari setiap suku. Suku 2x dapat dipecah menjadi 2 dan x, suku 3 dapat dipecah menjadi 3, dan suku 5 dapat dipecah menjadi 5. Kemudian, kita dapat mengelompokkan faktor-faktor tersebut dan mengambil faktor terbesar dari setiap kelompok. Dari kelompok faktor 2 dan x, faktor terbesarnya adalah 2. Dari kelompok faktor 3, faktor terbesarnya adalah 3. Dari kelompok faktor 5, faktor terbesarnya adalah 5. Lalu, kita dapat mengalikan faktor-faktor terbesar tersebut, yaitu 2 x 3 x 5 = 30. Oleh karena itu, bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x. Mengapa Bentuk Sederhana dari Perkalian Suku Penting? Mungkin Anda bertanya-tanya, mengapa kita perlu mengetahui bentuk sederhana dari perkalian suku? Salah satu alasannya adalah untuk mempermudah penghitungan. Misalnya, jika kita ingin menghitung 2x 3 x 5 x 2, kita dapat menggunakan bentuk sederhana dari perkalian suku, yaitu 30x, sehingga hasilnya adalah 30Γ—2 atau itu, dengan mengetahui bentuk sederhana dari perkalian suku, kita juga dapat mempermudah penyelesaian persamaan. Misalnya, jika kita memiliki persamaan 2x 3 x 5 = 60, kita dapat mengganti bentuk sederhana dari perkalian suku, yaitu 30x, sehingga persamaannya menjadi 30x = 60 atau x = 2. Kesimpulan Dalam matematika, perkalian suku adalah sebuah konsep yang penting untuk dipahami. Namun, dengan mengetahui bentuk sederhana dari perkalian suku, kita dapat mempermudah penghitungan dan penyelesaian persamaan. Bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x, yang diperoleh dengan mengambil faktor terbesar dari setiap suku. Semoga artikel ini bermanfaat dan membantu Anda dalam memahami konsep matematika yang satu ini. Sampai Jumpa di Artikel Menarik Lainnya! 17 Bentuk baku dari fungsi boolean tidak harus mengandung literal yang lengkap. Contohnya, β€’ f (x, y, z) = y' + xy + x'yz (bentuk baku SOP) β€’ f (x, y, z) = x (y' + z) (x' + y + z') (bentuk baku POS) 18. β€’ Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara: β€’ Secara aljabar β€’ Menggunakan Peta Karnaugh Bentuksederhana dari dari perkalian suku(2x-3)(x+5)adalah. Question from @Seachudin15oyoge5 - Sekolah Menengah Pertama - Matematika
10c+ 4d terdiri dari dua suku yaitu 10c dan 4d. 5Γ—2 - 8y - a ada tiga suku yakni 5Γ—2, 8y, dan a. 6. Untuk mencari bilangan KPK dan FPB pada aljabar dilakukan dengan mencari bentuk-bentuk menjadi perkalian faktor-faktor primanya. Contoh : 12pq dan 8pq 2. Jawab : = 12pq = 2 2 x 3 x p x q =8pq 2 = 2 3 x p x q 2; KPK= 2 3 x 3 x p x q 2
Aljabardi atas dapat dinyatakan dalam bentuk yang lebih sederhana dengan cara mengelompokkan suku-suku yang sejenis hingga diperoleh bentuk seperti berikut ini. β‡’ 5a + 2b + 10c. Untuk menyelesaikan penjumlahan atau pengurangan suku-suku sejenis dari bentuk aljabar dapat dilakukan dengan cara mengelompokkan dan menyusun ke bawah .
  • 2t6fmnfjqp.pages.dev/70
  • 2t6fmnfjqp.pages.dev/391
  • 2t6fmnfjqp.pages.dev/367
  • 2t6fmnfjqp.pages.dev/68
  • 2t6fmnfjqp.pages.dev/320
  • 2t6fmnfjqp.pages.dev/218
  • 2t6fmnfjqp.pages.dev/301
  • 2t6fmnfjqp.pages.dev/100
  • 2t6fmnfjqp.pages.dev/359
  • bentuk sederhana dari perkalian suku